MOSFET(金属氧化层半导体场效晶体管)

2023-02-17 214阅读

温馨提示:这篇文章已超过518天没有更新,请注意相关的内容是否还可用!

MOSFET

金属氧化层半导体场效晶体管

MOSFET。金属-氧化层-半导体-场效晶体管,简称金氧半场效晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET)是一种可以广泛使用在类比电路与数位电路的场效晶体管(field-effect transistor)。MOSFET依照其“通道”的极性不同,可分为n-type与p-type的MOSFET,通常又称为NMOSFET与PMOSFET,其他简称尚包括NMOS FET、PMOS FET、nMOSFET、pMOSFET等。

中文名金属-氧化物半导体场效应晶体管,简称金氧半场效晶体管
外文名Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET
别名NMOS、PMOS等
核心金属—氧化层—半导体电容

工作原理

要使增强型N沟道MOSFET工作,要在G、S之间加正电压VGS及在D、S之间加正电压VDS,则产生正向工作电流ID。改变VGS的电压可控制工作电流ID。如图3所示(上面↑)。 若先不接VGS(即VGS=0),在D与S极之间加一正电压VDS,漏极D与衬底之间的PN结处于反向,因此漏源之间不能导电。如果在栅极G与源极S之间加一电压VGS。此时可以将栅极与衬底看作电容器的两个极板,而氧化物绝缘层作为电容器的介质。当加上VGS时,在绝缘层和栅极界面上感应出正电荷,而在绝缘层和P型衬底界面上感应出负电荷(如图3)。这层感应的负电荷和P型衬底中的多数载流子(空穴)的极性相反,所以称为“反型层”,这反型层有可能将漏与源的两N型区连接起来形成导电沟道。当VGS电压太低时,感应出来的负电荷较少,它将被P型衬底中的空穴中和,因此在这种情况时,漏源之间仍然无电流ID。当VGS增加到一定值时,其感应的负电荷把两个分离的N区沟通形成N沟道,这个临界电压称为开启电压(或称阈值电压、门限电压),用符号VT表示(一般规定在ID=10uA时的VGS作为VT)。

当VGS继续增大,负电荷增加,导电沟道扩大,电阻降低,ID也随之增加,并且呈较好线性关系,如图4所示。此曲线称为转换特性。因此在一定范围内可以认为,改变VGS来控制漏源之间的电阻,达到控制ID的作用。由于这种结构在VGS=0时,ID=0,称这种MOSFET为增强型。另一类MOSFET,在VGS=0时也有一定的ID(称为IDSS),这种MOSFET称为耗尽型。它的结构如图5所示,它的转移特性如图6所示。VP为夹断电压(ID=0)。 耗尽型与增强型主要区别是在制造SiO2绝缘层中有大量的正离子,使在P型衬底的界面上感应出较多的负电荷,即在两个N型区中间的P型硅内形成一N型硅薄层而形成一导电沟道,所以在VGS=0时,有VDS作用时也有一定的ID(IDSS);当VGS有电压时(可以是正电压或负电压),改变感应的负电荷数量,从而改变ID的大小。VP为ID=0时的-VGS,称为夹断电压。

结构

一个NMOS晶体管的立体截面图左图是一个N型 MOSFET(以下简称NMOS)的截面图。如前所述,MOSFET的核心是位于中央的MOS电容,而左右两侧则是它的源极与漏极。源极与漏极的特性必须同为N型(即NMOS)或是同为P型(即PMOS)。右图NMOS的源极与漏极上标示的“N+”代表著两个意义:⑴N代表掺杂(doped)在源极与漏极区域的杂质极性为N;⑵“+”代表这个区域为高掺杂浓度区域(heavily doped region),也就是此区的电子浓度远高于其他区域。在源极与漏极之间被一个极性相反的区域隔开,也就是所谓的基极(或称基体)区域。如果是NMOS,那么其基体区的掺杂就是P型。反之对PMOS而言,基体应该是N型,而源极与漏极则为P型(而且是重(读作zhong)掺杂的P+)。基体的掺杂浓度不需要如源极或漏极那么高,故在右图中没有“+”。对这个NMOS而言,真正用来作为通道、让载流子通过的只有MOS电容正下方半导体的表面区域。当一个正电压施加在栅极上,带负电的电子就会被吸引至表面,形成通道,让N型半导体的多数载流子—电子可以从源极流向漏极。如果这个电压被移除,或是放上一个负电压,那么通道就无法形成,载流子也无法在源极与漏极之间流动。假设操作的对象换成PMOS,那么源极与漏极为P型、基体则是N型。在PMOS的栅极上施加负电压,则半导体上的空穴会被吸引到表面形成通道,半导体的多数载流子—空穴则可以从源极流向漏极。假设这个负电压被移除,或是加上正电压,那么通道无法形成,一样无法让载流子在源极和漏极间流动。

特别要说明的是,源极在MOSFET里的意思是“提供多数载流子的来源”。对NMOS而言,多数载流子是电子;对PMOS而言,多数载流子是空穴。相对的,漏极就是接受多数载流子的端点。

主要参数

场效应管的参数很多,包括直流参数、交流参数和极限参数,但一般使用时关注以下主要参数:1、IDSS—饱和漏源电流。是指结型或耗尽型绝缘栅场效应管中,栅极电压UGS=0时的漏源电流。2、UP—夹断电压。是指结型或耗尽型绝缘栅场效应管中,使漏源间刚截止时的栅极电压。3、UT—开启电压。是指增强型绝缘栅场效管中,使漏源间刚导通时的栅极电压。4、gM—跨导。是表示栅源电压UGS—对漏极电流ID的控制能力,即漏极电流ID变化量与栅源电压UGS变化量的比值。gM是衡量场效应管放大能力的重要参数。5、BUDS—漏源击穿电压。是指栅源电压UGS一定时,场效应管正常工作所能承受的最大漏源电压。这是一项极限参数,加在场效应管上的工作电压必须小于BUDS。6、PDSM—最大耗散功率。也是一项极限参数,是指场效应管性能不变坏时所允许的最大漏源耗散功率。使用时,场效应管实际功耗应小于PDSM并留有一定余量。

7、IDSM—最大漏源电流。是一项极限参数,是指场效应管正常工作时,漏源间所允许通过的最大电流。场效应管的工作电流不应超过IDSM。

参考资料

1.MOSFET·维库电子市场网

2.MOSFET·宇芯微

目录[+]