凝聚态物理学(物理学的分支学科)

2023-04-06 46阅读

温馨提示:这篇文章已超过478天没有更新,请注意相关的内容是否还可用!

凝聚态物理学

物理学的分支学科

凝聚态物理学(condensed matter physics)是研究凝聚态物质的物理性质与微观结构以及它们之间的关系,即通过研究构成凝聚态物质的电子、离子、原子及分子的运动形态和规律,从而认识其物理性质的学科。

中文名凝聚态物理学
外文名condensed matter physics
研究对象凝聚态物质
研究范围凝聚态性质与微观结构及其关系
性质物理学的分支学科

学科介绍

凝聚态物理学是当今物理学最大也是最重要的分支学科之一。

其研究层次,从宏观、介观到微观,进一步从微观层次统一认识各种凝聚态物理现象;物质维数从三维到低维和分数维;结构从周期到非周期和准周期,完整到不完整和近完整;外界环境从常规条件到极端条件和多种极端条件交叉作用,等等,形成了比固体物理学更深刻更普遍的理论体系。

经过半个世纪多的发展,凝聚态物理学已成为物理学中最重要、最丰富和最活跃的学科,在诸如半导体、磁学、超导体等许多学科领域中的重大成就已在当代高新科学技术领域中起关键性作用,为发展新材料、新器件和新工艺提供了科学基础。

前沿研究热点层出不穷,新兴交叉分支学科不断出现是凝聚态物理学的一个重要特点;与生产实践密切联系是它的另一重要特点,许多研究课题经常同时兼有基础研究和开发应用研究的性质,研究成果可望迅速转化为生产力。

起源发展

凝聚态物理学起源于19世纪固体物理学和低温物理学的发展。19世纪,人们对晶体的认识逐渐深入。1840年法国物理学家A·布拉维导出了三维晶体的所有14种排列方式,即布拉维点阵。1912年,德国物理学家冯·劳厄发现了X射线在晶体上的衍射,开创了固体物理学的新时代,从此,人们可以通过X射线的衍射条纹研究晶体的微观结构。

19世纪,英国著名物理学家法拉第在低温下液化了大部分当时已知的气体。1908年,荷兰物理学家H·昂内斯将最后一种难以液化的气体氦气液化,创造了人造低温的新纪录-269°C(4K),并且发现了金属在低温下的超导现象。超导具有广阔的应用前景,超导的理论和实验研究在20世纪获得了长足进展,临界转变温度最高纪录不断刷新,超导研究已经成为凝聚态物理学中最热门的领域之一。

现今凝聚态物理学面临的主要问题高温超导体的理论模型。

理论基础

固体物理学的一个重要的理论基石为能带理论,它是建立在单电子近似的基础上的。而凝聚态物理学的概念体系则渊源于相变与临界现象的理论,植根于相互作用多粒子理论,因而具有更加宽阔的视野:既关注处于相变点一侧的有序相,也不忽视处于另一侧的无序相,乃至于两者之间临界区域中体现标度律与普适性的物理行为。

L.朗道于1937年针对二级相变提出了对称破缺的重要概念,后来成为凝聚态物理学概念体系的主轴。在某一特定的物态之中,某一对称元素的存在与否是不能模棱两可的。当原始相中某一对称元素在变温或变压过程中突然丧失,就意味着发生了相变,出现了有序相。

引入序参量用来定性和定量地描述有序相和原始相的偏离。一直降到零温(0K),有序相达到基态,而非零温的有序相处于激发态。而激发态有恢复破缺了的对称性的倾向。低能激发态是非定域的,以波或准粒子的形式出现,被称为元激发的集合。非线性定域化的激发态则称“谶纬”拓扑缺陷。元激发与拓扑缺陷均会对不同的物理性质产生影响。

物质处在足够高的温度将呈现气态,它是均匀且各向同性的,就统计意义而言,保持了完整的平移和旋转对称性,与统辖它的物理定律的对称性相同。降温会使气体凝结成液体,虽则整体的对称性仍然保持不变,但出现了短程序。再降温又使液体凝固成为晶体,平移和旋转的对称性都发生破缺,剩下的对称性属230个空间群中的一个。

固体丰富多彩的物性是和对称破缺密切相关,而具有诱人兴趣物性的液体也多半是液晶或复杂液体,也和某种对称破缺有关。晶态中的元激发为晶格振动或声子,是理解固体的热学性质的关键,晶态中的拓扑缺陷为位错,是理解固体的塑性与强度的关键。

研究内容

凝聚态物理学的基本任务在于阐明微观结构与物性的关系,因而判断构成凝聚态物质的某些类型微观粒子的集体是否呈现量子特征(波粒二象性)是至关紧要的。电子质量小,常温下明显地呈现量子特征;离子或原子则由于质量较重,只有低温下(约4K)的液氦或极低温下(μK至nK)的碱金属稀薄气体,原子的量子特征才突出地表现出来。

这也说明为何低温条件对凝聚态物理学的研究十分重要。微观粒子分为两类:一类是费米子,具有半整数的自旋,服从泡利不相容原理;另一类是玻色子,具有整数的自旋,同一能态容许任意数的粒子占据。这两类粒子的物理行为判然有别。

研究热点

凝聚态物理学的研究热点:

①1984年发现准晶态;

②1986年发现高温超导体YBaCuO2(钇钡铜氧化物);

③1984年建立纳米科学;

④1992年发现材料LaSrMnO3的巨磁阻效应;

⑤2001年发现新的高温超导材料MgB2。

发展方向

凝聚态物理学的理论基础是量子力学,基本上已经完备而成熟。但由于这里涉及大量(趋于10-23)微观粒子的体系,而且研究对象进一步复杂化,新结构、新现象和新机制依然层出不穷,需要从实验、理论和计算上的探索,仍构成对人类智力的强有力的挑战。

凝聚态物理学和高新技术的发展关系密切。信息、材料和能源技术在21世纪所面临的挑战将给凝聚态物理学的进一步发展提供机遇。凝聚态物理学还在学科交叉中大有可为。随着凝聚态物理学日益深入到复杂结构的物质。它和化学之间的交叉渗透也愈来愈明显,甚至学科间的分界线已趋于模糊。它和生物学之间的交叉渗透也日新月异,既有实验技术上的相互支持,又有机制理论上的共同探索。

参考资料

1.北京航空航天大学凝聚态物理考研专业分析·考研派

目录[+]