一次函数(数学概念)

2023-04-18 66阅读

温馨提示:这篇文章已超过396天没有更新,请注意相关的内容是否还可用!

一次函数

数学概念

一次函数是函数中的一种,一般形如y=kx+b(k,b是常数,k≠0),其中x是自变量,y是因变量。特别地,当b=0时,y=kx(k为常数,k≠0),y叫做x的正比例函数(direct proportion function)。

一次函数及其图象是初中代数的重要内容,也是高中解析几何的基石,更是中考的重点考查内容。

中文名 一次函数
外文名 Linear function
表达式 y=kx+b(k,b为常数,且k≠0)
应用学科 数学、科学、物理;
提出者 莱布尼茨
适用领域 计算机、数学;

函数由来

“函数”一词最初是由德国的数学家莱布尼茨在17世纪首先采用的,当时莱布尼茨用“函数”这一词来表示变量x的幂,即x2,x3,….接下来莱布尼茨又将“函数”这一词用来表示曲线上的横坐标、纵坐标、切线的长度、垂线的长度等等所有与曲线上的点有关的变量,就这样“函数”这词逐渐盛行。

在中国,古时候的人将“函”字与“含”字通用,都有着“包含”的意思,清代数学家、天文学家、翻译家和教育家,近代科学的先驱者李善兰给出的定义是:“凡式中含天,为天之函数。”中国的古代人还用“天、地、人、物”4个字来表示4个不同的未知数或变量,显然,在李善兰的这个定义中的含义就是“凡是公式中含有变量x,则该式子叫做x的函数。”这样,在中国“函数”是指公式里含有变量的意思。

瑞士数学家雅克·柏努意给出了和莱布尼茨相同的函数定义。1718年,雅克·柏努意的弟弟约翰·柏努意给出了函数了如下的函数定义:由任一变数和常数的任意形式所构成的量叫做这一变数的函数.换句话说,由x和常量所构成的任一式子都可称之为关于x的函数。

1775年,欧拉把函数定义为:“如果某些变量:以某一种方式依赖于另一些变量.即当后面这些变量变化时,前面这些变量也随着变化,我们把前面的变量称为后面变量的函数。”由此可以看到,由莱布尼兹到欧拉所引入的函数概念,都还是和解析表达式、曲线表达式等概念纠缠在一起。

首屈一指的法国数学家柯西引入了新的函数定义:“在某些变数间存在着一定的关系,当一经给定其中某一变数的值,其它变数的值也可随之而确定时,则将最初的变数称之为‘自变数’,其它各变数则称为“函数”。在柯西的定义中,首先出现了“自变量”一词。

1834年,俄国数学家罗巴契夫斯基进一步提出函数的定义:“x的函数是这样的一个数,它对于每一个x都有确定的值,并且随着x一起变化。函数值可以由解析式给出,也可以由一个条件给出,这个条件提供了一种寻求全部对应值的方法.函数的这种依赖关系可以存在,但仍然是未知的”.这个定义指出了对应关系。即条件的必要性,利用这个关系以求出每一个x的对应值。

1837年德国数学家狄里克雷认为怎样去建立x与y之间的对应关系是无关紧要的,所以他的定义是:“如果对于x的每一个值,y总有一个完全确定的值与之对应,则y是x的函数。”

德国数学家黎曼引入了函数的新定义:“对于x的每一个值,y总有完全确定了的值与之对应,而不拘建立x,y之间的对应方法如何,均将y称为x的函数。”

上面函数概念的演变,我们可以知道,函数的定义必须抓住函数的本质属性,变量y称为x的函数,只须有一个法则存在,使得这个函数取值范围中的每一个值,有一个确定的y值和它对应就行了,不管这个法则是公式或图象或表格或其他形式。

由此,就有了我们课本上的函数的定义:一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有惟一确定的值与其对应,那么我们就说x是自变量,y是x的函数。

表示方法

一次函数有三种表示方法,如下:

解析式法

用含自变量x的式子表示函数的方法叫做解析式法。

列表法

把一系列x的值对应的函数值y列成一个表来表示的函数关系的方法叫做列表法。

图像法

用图象来表示函数关系的方法叫做图像法。

解析式

一次函数的解析式为:

其中m是斜率,不能为0;x表示自变量,b表示y轴截距。且m和b均为常数。先设出函数解析式,再根据条件确定解析式中未知的斜率,从而得出解析式。该解析式类似于直线方程中的斜截式。

基本性质

1、作法与图形:通过如下3个步骤:

(1)列表:每确定自变量x的一个值,求出因变量y的一个值,并列表;

(2)描点:一般取两个点,根据“两点确定一条直线”的道理,即在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。

一般地,y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点即可画出。

正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k)两点画出。

(3)连线:可以作出一次函数的图象——一条直线。因此,作一次函数的图象只需知道2点,并连成直线即可。

2、性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图象都是过原点。

3、函数不是数,它是指某一变化过程中两个变量之间的关系。

4、k,b与函数图像所在象限:

y=kx时(即b等于0,y与x成正比,此时的图象是一条经过原点的直线)

当k>0时,直线必通过一、三象限,y随x的增大而增大;

当k<0时,直线必通过二、四象限,y随x的增大而减小。

y=kx+b(k,b为常数,k≠0)时:

当k>0,b>0,这时此函数的图象经过一,二,三象限;

当k>0,b<0,这时此函数的图象经过一,三,四象限;

当k<0,b>0,这时此函数的图象经过一,二,四象限;

当k<0,b<0,这时此函数的图象经过二,三,四象限。

当b>0时,直线必通过一、二象限;

当b<0时,直线必通过三、四象限。

特别地,当b=0时,直线通过原点O(0,0)表示的是正比例函数的图象。

这时,当k>0时,直线只通过一、三象限,不会通过二、四象限。当k<0时,直线只通过二、四象限,不会通过一、三象限。

5、当x=0时,b为函数在y轴上的交点,坐标为(0,b)。

当y=0时,该函数图像在x轴上的交点坐标为(-b/k,0)。

6、直线y=kx+b的图象和性质与k、b的关系如下表所示:

k>0,b>0:经过第一、二、三象限

k>0,b<0:经过第一、三、四象限

k>0,b=0:经过第一、三象限(经过原点)

结论:k>0时,图象从左到右上升,y随x的增大而增大。

k<0,b>0:经过第一、二、四象限

k<0,b<0:经过第二、三、四象限

k<0,b=0:经过第二、四象限(经过原点)

结论:k<0时,图象从左到右下降,y随x的增大而减小。

7、将函数向上平移n格,函数解析式为y=kx+b+n,将函数向下平移n格,函数解析式为y=kx+b-n,将函数向左平移n格,函数解析式为y=k(x+n)+b,将函数向右平移n格,函数解析式为y=k(x-n)+b。

8、k为一次函数y=kx+b的斜率,k=tanθ(角θ为一次函数图像与x轴正方向夹角,θ≠90°)。

9、特殊位置关系

当平面直角坐标系中两直线平行时,其函数斜率相等。

当平面直角坐标系中两直线垂直时,其函数斜率的乘积为-1。

特殊位置关系的证明

关于平面直角坐标系中两直线垂直时,其函数斜率互为负倒数的证明:

如图,这2个函数互相垂直,但若直接证明,存在困难,不易理解,如果平移平面直角坐标系,使这2个函数的交点交于原点,就会更简单。就像这一样,可以设这2个函数的表达式分别为;

y=ax,y=bx。

在x正半轴上取一点(z,0)(便于计算),做与y轴平行的直线,如图,可知OC=z,AC=a*z,BC=b*z,由勾股定理可得:

OA=√z^2+(a*z)^2

OB=√z^2+(b*z)^2

又有OA^2+OB^2=AB^2,得

z^2+(az)^2+z^2+(bz)^2=(az-bz)^2(因为b小于0,故为az-bz)化简得:

z^2+a^2*z^2+z^2+b^2*z^2=a^2*z^2-2ab*z^2+b^2*z^2

2z^2=-2ab*z^2

ab=-1

即k=-1

所以两个K值的乘积为-1。

注意:与y轴平行的直线没有函数解析式,与x轴平行的直线的解析式为常函数,故上述性质中这两种直线除外。

学习方法

知识要点

1、要理解函数的意义。

2、联系实际对函数图像的理解。

3、随图象理解数字的变化而变化。

误区提醒

1、对一次函数概念理解有误,漏掉一次项系数不为0这一限制条件;

2、对一次函数图像和性质存在思维误区;

3、忽略一次函数自变量取值范围;(有时x∈Z,其图象表现为非连续性的点的集合)

4.对于一次函数中,把自变量认为不能等于零。

和方程的异同

1、一次函数和一元一次方程有相似的表达形式。

2、一次函数表示的是一对(x,y)之间的关系,它有无数对解;一元一次方程表示的是未知数x的值,最多只有1个值。

3、一次函数与x轴交点的横坐标就是相应的一元一次方程的根。

4、以二元一次方程组ax+by=c的解为坐标的点组成的图象与一次函数y=(-a/b)x+c/b的图象相同。

5、二元一次方程组a1x+b1y=c1,a2x+b2y=c2的解可以看作是两个一次函数y=(-a1/b1)x+c1/d1和y=(-a2/b2)x+c2/d2的图象的交点。

和不等式关系

从函数的角度看,解不等式的方法就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围的一个过程;

从函数图像的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合。

对应一次函数y=kx+b,它与x轴交点为(-b/k,0)。

当k>0时,不等式kx+b>0的解为:x>-b/k,不等式kx+b<0的解为:x<-b/k;

当k<0的解为:不等式kx+b>0的解为:x<-b/k,不等式kx+b<0的解为:x>-b/k。

函数应用

概括整合

(1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用。

(2)理清题意是采用分段函数解决问题的关键。

常用公式

1、求函数图像的k值:(y1-y2)/(x1-x2),即k=tanα(α为直线与x轴正方向的夹角)

2、求与x轴平行线段的中点:(x1+x2)/2

3、求与y轴平行线段的中点:(y1+y2)/2

4、求任意线段的长:√

5、求两个一次函数式图像交点坐标:解两函数式

两个一次函数y1=k1x+b1,y2=k2x+b2,令y1=y2,得k1x+b1=k2x+b2。将解得的x=x0值代回y1=k1x+b1,y2=k2x+b2两式的任一式,得到y=y0,则(x0,y0)即为y1=k1x+b1与y2=k2x+b2之交点坐标。

6、求任意2点所连线段的中点坐标:((x1+x2)/2,(y1+y2)/2)

7、求任意2点的连线的一次函数解析式:(x-x1)/(x1-x2)=(y-y1)/(y1-y2)(若分母为0,则分子为0)

(x,y)的正负性为+,+(正,正)时该点在第一象限

(x,y)的正负性为-,+(负,正)时该点在第二象限

(x,y)的正负性为-,-(负,负)时该点在第三象限

(x,y)的正负性为+,-(正,负)时该点在第四象限

8、若两条直线y1=k1x+b1,y2=k2x+b2互相平行,则k1=k2,b1≠b2

9、如两条直线y1=k1x+b1,y2=k2x+b2互相垂直,则k1×k2=-1

10、设原直线为y=f(x)=kx+b

y=f(x-n)=k(x-n)+b就是直线向右平移n个单位

y=f(x+n)=k(x+n)+b就是直线向左平移n个单位

y=f(x)+n=kx+b+n就是向上平移n个单位

y=f(x)-n=kx+b-n就是向下平移n个单位

口诀:左加右减相对于X,上加下减相对于b。

11、直线y=kx+b与x轴的交点:(-b/k,0),与y轴的交点:(0,b)

生活中的应用

1、当时间t一定,距离s是速度v的一次函数。s=vt。

2、如果水池抽水速度f一定,水池里水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。

3、当弹簧原长度b(未挂重物时的长度)一定时,弹簧挂重物后的长度y是重物重量x的一次函数,即y=kx+b(k为任意正数)。

参考资料

1.一次函数·初三网

目录[+]